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1 Biospecimen Collection and Processing

1.1 Biospecimen Collection

All biospecimens were collected as described in detail in [1] (see Supplemental Information of that publi-
cation). Complete descriptions of the donor enrollment and consent process, as well as biospecimen pro-
curement methods, sample fixation, and histopathological review procedures are described in [2]. In brief, 
a robust quality management program was established and implemented for data management, Standard 
Operating Procedure (SOP) development, and auditing of collections. Document control software was used 
to ensure all biospecimen collection sites used current versions of SOPs, and training was conducted prior 
to implementation of all new procedures. Supporting quality documents were developed to provide consis-
tency and clarity to the program, and many of those documents, such as the SOPs used and workflows for 
the project, are available to the public (http://biospecimens.cancer.gov/resources/sops/
default.asp).

1.2 Molecular Analyte Extraction and QC

Detailed protocols for the extraction of DNA and RNA from blood, cell pellets, and PAXgene-fixed and 
frozen tissues were described in [1]. The same protocols were used to avoid introduction of batch effects 
among samples, which were processed continually throughout the project. To control for variable RNA 
quality [1], RNA sequencing was only performed for samples with a RIN score of 5.7 or higher and with at 
least 500 ng of total RNA.

2 Genotyping, Imputation and Phasing

2.1 Genotyping arrays and sample quality control

455 donors (296 males and 159 females) were genotyped with Illumina Omni arrays for GTEx Release v6 
(dbGaP accession phs000424.v6.p1). These include an initial batch of 183 donors genotyped on Illumina’s 
HumanOmni5-Quad Array (4,276,680 variants), and 272 donors genotyped on Illumina’s HumanOmni2.5-
Quad Array (2,378,075 variants). From the 455 donors, 5 were removed following sample quality control 
(QC), yielding 450 post-QC donors for eQTL analyses. Three donors were identified as members of a trio 
or pair of related donors, respectively; one was identified as having Klinefelter syndrome; and one was 
identified as having chromosome 17p trisomy (Supplementary Table 1; the chr17p trisomy donor was 
detected and excluded after variant QC and imputation; hence these steps were performed on 451 donors). 
The original genotype calls for all 455 donors are available in dbGaP (phs000424.v3.p1 for the VCF of 
Omni 5M samples; phs000424.v6.p1 for the VCF of Omni 2.5M samples).

DNA isolated from blood samples was the primary source of DNA used for genotyping ( > 360 ng 
DNA), performed at the Broad Institute of Harvard and MIT. Genotypes were called using Illumina’s 
GeneTrain calling algorithm (Autocall). The genotyping call rates per donor exceeded 98% for all sam-
ples. All genotypes and analyses were aligned to chromosome positions from the human reference genome 
GRCh37/hg19.
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To merge the genotypes from Illumina’s Omni 5M and Omni 2.5M arrays, we extracted the genotype
calls of an overlapping subset of ˜2.2 million variants between the two platforms from all samples, using
VCFtools (http://vcftools.sourceforge.net/). This enabled imputation of the same set of
variants in all samples, with minimal loss of accuracy due to high concordance between hard calls and
imputed genotypes (Supplementary Table 2).

2.2 Variant quality control (QC) of autosomal genotypes before imputation

Multiple sample and variant QC steps were performed before imputation to ensure inclusion of only high
confidence variants for eQTL analyses. Supplementary Table 1 summarizes the QC steps performed using
PLINK [3], together with the number of samples and variants removed or retained at each step. This resulted
in a set of 1,883,274 variants genotyped across the 450 donors. Of the 450 donors, 449 had RNA-sequencing
data available in release v6p.

2.3 Imputation of autosomal genotypes

To increase resolution for discovering new eQTLs across GTEx tissues, we imputed variants from the 1000
Genomes Project into the quality-controlled Omni 5M+2.5M merged genotype data for 451 GTEx donors.
The reference panel used was the 1000 Genomes Phase 1 integrated variant set release from March 2012
(release v3), updated on 24 August 2012 (additional problematic indels removed), and downloaded from the
IMPUTE2 website: https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_
phase1_integrated.html. This version includes variants and indels and is limited to variants with
more than one minor allele copy (“macGT1”, or “minor allele count greater than 1”) across all 1,092 donors.

In addition to the QC filters applied in Supplementary Table 1, we filtered out variants with incompati-
ble alleles between the Omni 5M or 2.5M arrays and the 1000 Genomes reference data (4,475 variants), and
variants with a frequency difference larger than 0.15 between GTEx and 1000 Genomes samples, computed
using samples of European descent that constitute the majority of samples in GTEx (819 variants). Variants
whose alleles did not align to the same DNA strand between GTEx samples and 1000 Genomes Project
(human reference genome GRCh37/hg19) were removed.

Imputation was performed separately for variants on the autosomal and sex chromosomes using IM-
PUTE2 [4].

2.3.1 Imputation of autosomes

The imputation of autosomes was performed using the Ricopili pipeline (https://sites.
google.com/a/broadinstitute.org/ricopili/). Pre-phasing was run on all sam-
ples together using SHAPEIT (https://mathgen.stats.ox.ac.uk/genetics_software/
shapeit/shapeit.html) [5]. Imputation was performed on 3 Mb segments across chromosomes,
which were subsequently merged. This yielded 14,390,153 variants across 451 samples before filtering on
imputation quality (INFO score) or minor allele frequency (MAF). Imputation quality was high for com-
mon variants and lower for low frequency variants, as previously observed [6]. (Supplementary Fig. 1 and
Table 3).

The following QC filters were applied to generate a final analysis freeze of the genotyped and imputed
array VCF for eQTL analysis: INFO < 0.4, minor allele frequency (MAF) < 1%, Hardy-Weinberg Equilib-
rium (HWE) p < 10−6 (only 9 variants were removed due to HWE filtering). We calculated the missingness
rate for best-guessed genotypes and the HWE test using the SNPTEST software [7], using only donors of
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European descent. Indels with a length above 51 base pairs were removed (˜2,600 variants). About 13% of
variants were hard call genotypes and 87% of variants were imputed. About 91% of the total number of vari-
ants (11,555,102) were SNPs and 8.9% indels. The REF and ALT alleles in the imputed VCF were verified
for alignment to the human reference genome GRCh37/hg19, and the REF and ALT sequences (A,T,G,C)
were added for both SNPs and indels.

The final genotyped and imputed array VCF (version 4.1) for autosomal variants contained genotype
posterior probabilities for each of the three possible genotypes for 11,552,519 variants across 450 GTEx
donors. The dosage of the alternative allele relative to the reference genome was used for eQTL analyses.

2.3.2 Evaluation of imputation accuracy

To assess the imputation accuracy on autosomal chromosomes, we used the 183 GTEx donors from the
Pilot phase that were genotyped on Omni 5M, and compared the alternative allele dosages between imputed
and genotyped calls, using the Omni 2.5S subset of variants (Omni 5M consists of 2.5M and 2.5S variant
sets), for which both direct calls on the Omni 5M array and imputed calls from the merged set of 450
samples were available. Imputation accuracy was assessed for each of the 2.5S variants separately, through
correlation analysis between the alternative allele dosage of the post-QC’d imputed calls and the directly
genotyped calls across the 183 samples (Supplementary Fig. 2a). The imputation accuracy was high for
common variants (medianR2 = 0.985-0.989), and lower, as expected, for low frequency variants (medianR2

= 0.804-0.976) (Supplementary Table 4). These results are comparable with imputation accuracy reported
in other projects, including the 1000 Genomes Project [6].

2.4 Quality control and imputation of chromosome X genotypes

Array merging and QC for chromosome X variants was performed as described for autosomal variants,
with the following exceptions: (i) of the 636 variants that failed the heterozygous haploid test on the sex
chromosomes in males (step 13 in Supplementary Table 1), heterozygous variants in the pseudoautosomal
regions between chromosomes X and Y (PAR1 and PAR2) were restored. Heterozygous variants in the non-
pseudoautosomal region of the X chromosome (nonPAR) were excluded; (ii) PAR1, nonPAR and PAR2
genotypes were imputed separately. For imputation purposes only, the PAR1 and PAR2 pseudoautosomal
regions were treated as pseudo-diploid, and were distinguished from the nonPAR region that is diploid in
females and haploid in males, by encoding the PAR regions with contig number 25 instead of 23. The
nonPAR genotypes in males, even though hemizygous, were encoded as homozygous REF or homozygous
ALT; (iii) strand alignment errors and missing variants between the GTEx samples and the 1000 Genome
Project reference haplotypes were verified with SHAPEIT. The chromosome coordinates of the PAR1, PAR2
and nonPAR regions in chromosome X were taken from the UCSC browser (Supplementary Table 5).

Imputation of the X chromosome was performed as described for the autosomes, except for adding
the --chrX flag for the imputation of the nonPAR region. The PAR1 and PAR2 regions were treated like
autosomes. Imputation of the nonPAR region was performed on 5 Mb segments, with 300 kb overlap. The
PAR1 and PAR2 regions were each imputed in a single, separate segment. All segments were then merged
into a single VCF, and the three regions were labeled in the INFO field using the ChrX REGION label.

2.5 Evaluation of imputation accuracy for chromosome X

The distribution of the IMPUTE2 imputation quality score, INFO, stratified by minor allele frequency
(MAF) for the three chromosome X regions PAR1, PAR2, and nonPAR, is shown in Supplementary Fig.
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3. Imputation performance for MAF > 1% variants for the nonPAR region was comparable to that of
the autosomes (Supplementary Tables 3 and 6). In the PAR regions performance was generally poor
(Supplementary Table 6), likely due to the smaller number of variants and potentially higher recombina-
tion rates than in the nonPAR region in males [8].

Imputation of chromosome X yielded 1,000,339 genotyped and imputed variants. Post-imputation QC
steps as described for autosomes (INFO < 0.4, MAF < 1%, HWE p < 10−6, alignment to the ref-
erence genome) were applied to chromosome X variants, resulting in a filtered set of 406,892 variants
(Supplementary Table 7). Of these, ˜6% (25,300 variants) were directly genotyped on the array and ˜94%
were imputed (381,592 variants), and the majority are located in the nonPAR region (Supplementary Table
7). The HWE test was performed using the subset of female samples of European descent. The imputation
accuracy of chromosome X variants after applying QC filters (Supplementary Table 8) was comparable to
that of autosomal variants (Supplementary Table 3).

2.6 Population stratification analysis

We computed the principal components (PCs) of the genotyped and imputed variants from the 450
donors using EIGENSTRAT [9] as implemented in Ricopili (https://sites.google.com/a/
broadinstitute.org/ricopili/pca). This was performed using a genome-wide set of linkage
disequilibrium (LD)-pruned variants (R2 > 0.2, plink --indep-pairwise 200 100 0.2) generated from best-
guessed genotype calls after imputation (Posterior probability > 0.9). Variant filters were applied, including
the exclusion of variants not present in all samples, strand ambiguous variants (AT, CG), variants in the
MHC region, and variants with MAF < 5%, HWE p < 10−4, and variant missing rate < 2%.

Plots of the first three PCs are shown in Supplementary Fig. 4. PCs 1 and 2 match the known ethnicity
distribution of the donors, with a majority of samples of European ancestry and a smaller fraction (˜14%)
of African ancestry. We did not identify any outlier samples based on ancestry. The distribution of ethnic
backgrounds was similar between Omni 5M and 2.5M array samples, except for the few donors of Asian
ancestry that were all genotyped on Omni 5M.

The first 20 PCs are available on dbGaP (phs000424.v6.p1). To correct for population stratification in
eQTL analyses, the first 3 PCs were used as covariates, as they captured the largest proportions of genotype
variance (Supplementary Fig. 4a,b). PC 9 is significantly correlated with genotyping platform (Omni 2.5M
versus 5M array; r = −0.18, P ≤ 0.00053; Supplementary Fig. 4c), but we explicitly added this covariate
to the eQTL model.

2.7 Functional annotation of variants in coding regions

We annotated the genotyped and imputed autosomal and chromosome X VCFs using the Variant Effect
Predictor tool (VEP v77, GENCODE v19) from Ensembl (http://useast.ensembl.org/info/
docs/tools/vep/) with the LOFTEE plugin (version 0.2.1, available at https://github.com/
konradjk/loftee) to tag loss of function (LoF) variants. The functional annotations were added
to variants in coding and intronic regions (sequence ontology terms below “INTRON VARIANT” sever-
ity in the following ordering were filtered out: http://useast.ensembl.org/info/genome/
variation/predicted_data.html?redirect=no#consequences). Additional LoF annota-
tion was applied to variants that were annotated as “STOP GAINED”, “SPLICE DONOR VARIANT”,
“SPLICE ACCEPTOR VARIANT”, and “FRAME SHIFT” and the variants were flagged as low-
confidence (LC) if any filters failed, otherwise as high-confidence (HC). The filters are described in the doc-
umentation at https://github.com/konradjk/loftee, and are annotated in the LoF, LoF flag,
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and LoF filter fields inside the VEP annotation (CSQ) field. We used PLINK/SEQ to generate predictions
of nonsense-mediated decay based on [10, 11].

2.8 Phasing of autosomal genotypes using haploid imputation

To facilitate the interpretation of functional mechanisms underlying regulatory regions, we phased the geno-
typed and imputed autosomal variants from the Omni arrays across the 451 donors. Since the standard
IMPUTE2 variant imputation process only preserves phased information for directly genotyped variants,
we performed haploid imputation to retain phasing information for imputed variants, using pre-phased hap-
lotypes from the 1000 Genomes Project (Olivier Delaneau and Bryan Howie, personal communication). In
this approach each haplotype of an individual is treated as a separate individual, and imputation is performed
on the haplotypes generated during the pre-phasing step of the imputation process.

Haploid imputation was run on the same pre-phased haplotypes generated for the original diploid impu-
tation of the Omni array genotype calls for the 451 donors using SHAPEIT (see Section S2.3). The output
was diploid imputation probabilities. The main differences of the haploid imputation compared to standard
diploid imputation in IMPUTE2 are: (i) The pre-phased genotype file (specified with the -g flag), generated
with SHAPEIT on the hard genotype calls, was reformatted into “IMPUTE haploid genotype” format. The
haploid genotype format is the same as a standard IMPUTE genotype format (five header columns, then
three columns encoding the genotype per haploid haplotype which should never be heterozygous, e.g., a
diploid genotype row: variant1 rs1 100 A C 0 1 will be encoded as: variant1 rs1 100 A C 1 0 0 0 0 1); (ii)
the flag -haploid g was added, specifying that the pre-phased genotype file is in haploid genotype format.
Haploid imputation was performed on 3 Mb segments on each chromosome with an overlap of 300 kb,
which were later merged. The haploid imputation across 451 GTEx donors resulted in 30,069,600 variant
sites (variants and indels), before variant quality control filtering, 28,259,400 of which were imputed.

2.8.1 Evaluation of haploid imputation quality used for phasing

The imputation quality of autosomal variants using haploid imputation was comparable to standard diploid
imputation (Supplementary Tables 3 and 9). To further assess the accuracy of haploid imputation, we
computed the concordance between the alternative (ALT) allele dosages of 9,099,125 overlapping imputed
variants from diploid imputation (see Section S2.3) and haploid imputation (missingness rate < 0.1 in
both VCFs). Imputation accuracy was assessed by calculating the Pearson correlation for each variant
between ALT dosages from the standard imputation and the haploid imputation across the 450 samples.
Supplementary Fig. 2b shows the distribution of R2 for all variants stratified by common (5-50%) and
low frequency (1-5%) variants. Imputation concordance was high for common variants (mean R2 = 0.997;
medianR2 = 1 at INFO> 0.4), and marginally lower for low frequency variants (meanR2 = 0.963; median
R2 = 1 at INFO > 0.4) (Supplementary Table 10).

2.8.2 Post-phasing variant quality control and filtering

To generate a final analysis freeze of the phased array VCF (version 4.1) of both genotyped and imputed
variants, we filtered on the following cutoffs, identical to those used for the imputed array VCF described in
Section S2.3: INFO> 0.4, MAF> 1%, HWE p> 10−6 (402 variants violated HWE and were removed from
the final VCF). The HWE test was only performed on samples of European descent, using the SNPTEST
software [7]. Indels longer than 51 base pairs were removed. The REF and ALT alleles in the imputed
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VCF were aligned to the human reference genome GRCh37/hg19. The final phased array VCF contained
11,607,846 variants across 450 donors, and was used for allele-specific expression analyses.

3 Whole genome sequencing

3.1 Whole genome sequencing

Whole genomes were sequenced from 148 donors in GTEx. Of these, 68 samples were sequenced on
Illumina’s HiSeq 2000 and 80 on Illumina’s HiSeq X. The mean coverage was 30x. Of the sequenced
samples, two samples displayed large chromosomal abnormalities, including one with a chr17p mosaic
trisomy and another with a mosaic loss of the Y chromosome (possibly around 75%; based on inspecting
chromosome Y coverage of this sample).

3.2 Sequencing on Illumina HiSeq 2000

Libraries of whole genome DNA for 68 GTEx donors were constructed and sequenced on an Illumina HiSeq
2000 at the Broad Institute as 101-bp paired-end reads. Output from Illumina software was processed by
the Picard data-processing pipeline to yield BAM files containing well-calibrated, aligned reads. All sample
information tracking was performed by automated LIMS messaging.

3.2.1 Library construction

For the GTEx samples, library construction was performed as described in [12]. Initial genomic DNA input
into shearing was reduced from 3 µg to 100 ng in 50 µL of solution. For adapter ligation, Illumina paired-
end adapters were replaced with palindromic forked adapters with unique 8-base index sequences embedded
within the adapter.

3.2.2 Size selection for whole genome shotgun libraries

Size selection was performed using gel electrophoresis, with a target insert size of either 340 bp or 370 bp
+/- 10% (both sizes were selected). Multiple gel cuts were taken for GTEx sample libraries that required
high sequencing coverage (30x). Size selection was performed using Sage’s Pippin Prep. The 340 bp insert
size was run on 1 sequencing lane and the 370 bp insert size was run on 2 lanes.

3.2.3 Library preparation for cluster amplification and sequencing

Following sample preparation, libraries were quantified using quantitative PCR (kit purchased from KAPA
Biosystems) with probes specific to the ends of the adapters. This assay was automated using Agilent’s
Bravo liquid handling platform. Based on qPCR quantification, libraries were normalized to 2 nM and then
denatured using 0.1 N NaOH using Perkin-Elmer’s MultiProbe liquid handling platform. Denatured samples
were diluted into strip tubes using the Perkin-Elmer MultiProbe.

3.2.4 Cluster amplification and sequencing

Cluster amplification of denatured templates was performed according to the manufacturer’s protocol (Illu-
mina) using HiSeq 2000 v2, or HiSeq v3 cluster chemistry and flow cells. For a subset of samples, after
cluster amplification, SYBR Green dye was added to all flow cell lanes, and a portion of each lane was
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visualized using a light microscope, in order to confirm target cluster density. Flow cells were sequenced on
HiSeq 2000 using HiSeq 2000 v3 Sequencing-by-Synthesis Kits, and then analyzed using RTA v.1.12.4.2.

3.3 Sequencing on Illumina HiSeq X

Libraries of whole genome DNA for 80 GTEx donors were constructed and sequenced on the Illumina
HiSeq X at the Broad Institute as 151-bp paired-end reads. Sample information tracking and output from
Illumina software was handled in the same way as for the samples sequenced on the Illumina HiSeq 2000.

3.3.1 Library construction and size selection

Initial genomic DNA input into shearing was reduced from 3 µg to 100 ng in 50 µL of solution. In addition,
for adapter ligation, Illumina paired end adapters were replaced with palindromic forked adapters with
unique 8 base index sequences embedded within the adapter. Size selection was performed using Sage’s
Pippin Prep, with a target insert size of 370 bp +/- 10%.

3.3.2 Library preparation for cluster amplification and sequencing

Following sample preparation, libraries were quantified using quantitative PCR (kit purchased from KAPA
Biosystems) with probes specific to the ends of the adapters. This assay was automated using Agilents
Bravo liquid handling platform. Based on qPCR quantification, libraries were normalized to 1 nM. Samples
were then combined with HiSeq X Cluster Amp Mix 1, 2, and 3 into single wells on a strip tube using the
Hamilton Starlet Liquid Handling system.

3.3.3 Cluster amplification and sequencing

Cluster amplification of the templates was performed according to the manufacturers protocol (Illumina)
using the Illumina cBot. Flowcells were sequenced on HiSeq X Sequencing-by-Synthesis Kits, and then
analyzed using RTA2.

3.4 Variant calling and functional annotation

Whole genome sequencing data were processed through a pipeline based on Picard (http://picard.
sourceforge.net/), using base quality score recalibration and local realignment at known indels.
We mapped reads to human reference genome GRCh37/hg19 with the BWA-MEM aligner (http://
bio-bwa.sourceforge.net). Variants and indels were jointly called across all 148 samples using
GATK’s HaplotypeCaller version 3.1 (http://www.broadinstitute.org/gatk/gatkdocs/)
together with an additional 900 WGS samples from non-GTEx projects, to increase sensitivity and speci-
ficity of variant calls. The non-GTEx samples were subsequently excluded from the final VCF. De-
fault filters were applied to SNP and indel calls using the GATK’s Variant Quality Score Recalibration
(VQSR) approach. An additional hard filter InbreedingCoeff <= -0.3 was applied to remove sites that
VQSR failed to filter. Also, variants that fell in Low Complexity Regions (LCR) were flagged in the
FILTER field. The coordinates of the LCR regions used as a filter mask can be found at: https:
//github.com/lh3/varcmp/raw/master/scripts/LCR-hs37d5.bed.gz.

Functional annotation was performed using the Variant Effect Predictor (VEP v80, GENCODE v19)
tool from Ensembl with the LOFTEE plugin as described in Section S2.7.
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4 Whole exome sequencing

Below is a brief description of the whole exome sequencing (WES) protocol and variant calling for 531
samples (524 donors), which is part of GTEx Release v6 (dbGaP accession phs000424.v6.p1), but was not
used in analyses presented in this paper.

4.1 Whole exome sequencing

Whole exome sequencing was performed on 531 DNA samples from 524 GTEx donors, using Agilent Sure-
Select Human All Exon v2.0, 44Mb baited target for the first 100 samples and Illuminas capture Exome
(ICE) for the remainder 431 samples. Seven samples were run in duplicates on Agilent and ICE for quality
control purposes. The WES samples include two samples with large chromosomal abnormalities (chr17p
mosaic trisomy and mosaic loss of the Y chromosome), and a sample from a self-reported female that
underwent transgender surgery at birth (contains Y chromosome).

4.2 Whole exome library construction, hybrid selection and sequencing

Exome sequencing was performed using the Broad’s in-solution hybrid selection process [12]. The exome-
sequencing pipeline included sample plating, library preparation (2-plexing of samples per hybridization for
the Agilent target capture and 8-plexing for the ICE capture), hybrid capture, sequencing (76bp paired-end
reads), sample identification QC check, and data storage. Library construction was performed as described
in [12], using Agilent target capture, and with the following modifications for ICE: initial genomic DNA
input into shearing was reduced from 3 µg to 100 ng in 50 µL of solution. For adapter ligation, Illumina
paired end adapters were replaced with palindromic forked adapters with unique 8 base molecular barcode
sequences embedded within the adapter to facilitate downstream pooling. The hybrid selection libraries
covered >80% of targets at 20x with a mean target coverage of >80x. Cluster amplification of denatured
templates was performed according to the manufacturer’s protocol (Illumina) using HiSeq 2000 v2 or HiSeq
v3 cluster chemistry and HiSeq 2000 or 2500 flow cells. Flow cells were sequenced on HiSeq 2000 or
2500 using HiSeq 2000 v2 or v3 Sequencing-by-Synthesis Kits, then analyzed using RTA v1.10.15, RTA
v.1.12.4.2 or a later version. The WES data was de-multiplexed and each sample’s sequence data were
aggregated into a single Picard BAM file. Output from Illumina software was processed by the Picard
data-processing pipeline to yield BAM files containing well-calibrated, aligned reads.

4.3 Variant calling and functional annotation

Exome sequencing data was processed through a pipeline based on Picard (http://picard.
sourceforge.net/), using base quality score recalibration and local realignment at known indels. We
used the BWA aligner (http://bio-bwa.sourceforge.net) for mapping reads to the human ref-
erence genome GRCh37/hg19. SNPs and indels were jointly called across all 531 samples using GATK’s
HaplotypeCaller version 3.1. The genomic intervals used for variant calling were Agilent’s exome inter-
vals for the first 180 pilot phase WES samples (the first 100 samples were sequenced with Agilent and the
remaining 80 samples were sequenced with ICE), and ICE exome intervals for the subsequent 351 WES
samples sequenced with ICE. Default filters were applied to SNP and indel calls using the GATK’s VQSR
approach. Functional annotation was performed using the Variant Effect Predictor (VEP v77, GENCODE
v19) tool from Ensembl with the LOFTEE plugin as described in Section S2.7.
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5 RNA Expression

5.1 RNA library preparation and sequencing

RNA sequencing was performed at the Broad Institute using a large-scale, automated variant of the Il-
lumina TruSeqTM RNA sample preparation protocol (http://www.illumina.com/documents/
products/datasheets/datasheet_truseq_sample_prep_kits.pdf), which was based on
poly-A selection of mRNA and was not strand-specific.

Briefly, total RNA was quantified using the Quant-iTTM RiboGreen®RNA Assay Kit and normalized to
5 ng per µL. An aliquot of 200 ng for each sample was transferred into library preparation, which was an
automated variant of the Illumina Tru SeqTM RNA sample preparation protocol (Revision A, 2010). This
method used oligo dT beads to select mRNA from the total RNA sample followed by heat fragmentation
and cDNA synthesis from the RNA template. The resultant cDNA then went through library preparation
(end repair, base ‘A’ addition, adapter ligation, and enrichment) using Broad Institute-designed indexed
adapters substituted in for multiplexing. After enrichment, the libraries were quantified with qPCR using
the KAPA Library Quantification Kit for Illumina Sequencing Platforms and then pooled equimolarly. The
entire process was performed in 96-well plates and all pipetting was performed by either Agilent Bravo
or Hamilton Starlet liquid handlers with electronic tracking throughout the process in real-time, including
reagent lot numbers, specific automation used, time stamps for each process step, and automatic registration.

Pooled libraries were normalized to 2 nM and denatured using 0.1 N NaOH prior to sequencing. Flow
cell cluster amplification and sequencing were performed according to the manufacturer’s protocols using
either the HiSeq 2000 or HiSeq 2500. Sequencing generated 76bp paired-end reads and an eight-base
index barcode read, and was run with a coverage goal of 50M reads (the median achieved was ˜82M total
reads). Raw sequence data was processed using the Broad Institute’s Picard pipeline, which includes de-
multiplexing and data aggregation steps.

5.2 RNA-seq alignment and quality control

RNA-seq data were aligned to the human reference genome GRCh37/hg19 with Tophat v1.4.1 [13]. Quality
control of the samples was performed as described in [1]. Briefly, low-quality samples were identified and
removed based on the following alignment metrics: < 10 million mapped reads; read mapping rate < 0.2;
intergenic mapping rate > 0.3; base mismatch rate > 0.008 (mismatched bases divided by total aligned
bases); rRNA read rate > 0.3. Additionally, outlier samples were identified based on expression profile
using a correlation-based statistic and sex incompatibility checks, following methods described in [14].
Among technical replicates (same aliquot sequenced multiple times for QC purposes), the sample with the
highest number of reads was retained for inclusion in the analysis freeze set. Finally, samples from donors
with cytogenetic anomalies (two donors with Klinefelter syndrome, and one transgender donor detected
after sequencing) were excluded from analyses.

5.3 Analysis freeze of tissues and samples for eQTL analyses

After QC, the v6p release contained 8555 RNA-seq samples. Among these, samples were selected based
on donor genotype availability and a threshold of at least 70 samples per tissue, resulting in a set of 7,051
samples from 44 tissues across 449 donors used for eQTL analyses. The tissues and samples are summarized
in Supplementary Fig. 5, which also contains the abbreviations and color scheme used throughout the
paper, and the distribution of RNA integrity number, ischemic time, and donor age within each tissue.
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5.4 Gene expression quantification

Gene-level expression quantification was performed using RNA-SeQC [15]. The quantification was
based on the GENCODE Release 19 annotation (http://www.gencodegenes.org/releases/
19.html), collapsed to a single transcript model for each gene, using a custom isoform collapsing pro-
cedure, comprising the following steps: 1) exons associated with transcripts annotated as “retained intron”
and “read through” were excluded; 2) exon intervals overlapping within a gene were merged; 3) the inter-
sections of exon intervals overlapping between genes were excluded; 4) the remaining exon intervals were
mapped to their respective gene identifier and stored in GTF format. This annotation is available on the
GTEx Portal (gencode.v19.genes.v6p_model.patched_contigs.gtf.gz).

Gene-level read counts and RPKM values were produced using the following read-level filters: 1) reads
were uniquely mapped (corresponding to a mapping quality of 255 for TopHat BAMs); 2) reads were aligned
in proper pairs; 3) the read alignment distance was ≤ 6; 4) reads were fully contained within exon bound-
aries. Reads overlapping introns were not counted. These filters were applied using the “-strictMode” flag
in RNA-SeQC.

To evaluate the global relationships of tissue transcriptomes, we applied MDS clustering for all 44 tissues
and for all brain tissues (Supplementary Fig. 6).

5.5 Normalization of expression data

Gene expression values for all samples from a given tissue were normalized for eQTL analyses using the
following procedure: 1) genes were selected based on expression thresholds of > 0.1 RPKM in at least
10 donors and ≥ 6 reads in at least 10 donors; 2) the distribution of RPKMs in each sample was quantile
normalized to the average empirical distribution observed across all samples; 3) expression values for each
gene were subsequently transformed to the quantiles of the standard normal distribution.

5.6 Correction for technical confounders

To account for hidden batch effects and other potential confounders in the gene expression data, we used the
Probabilistic Estimation of Expression Residuals (PEER) method to estimate a set of latent covariates for
gene expression levels for each tissue type [16]. The number of PEER factors was selected to maximize cis-
eGene discovery, and this optimization was performed for three sample size bins: tissues with fewer than 150
samples, tissues with ≥ 150 and < 250 samples, and tissues with ≥ 250 samples. Specifically, the eQTL
discovery pipeline was run in increments of 5 PEER factors for 12 tissues spread across the sample size
bins, using a reduced number of permutations (100 instead of the adaptive 1,000-10,000 used for all other
analyses; see Section S4 below). Based on these results, and to avoid potential overfitting, 15, 30, and 35
PEER factors were selected, respectively for the three sample size bins (Supplementary Fig. 7). We did not
have sufficient statistical power or sufficient numbers of trans-eQTLs to tune the number of PEER factors for
trans-eQTL analysis without facing potential overfitting to spurious signal. Post-hoc analysis demonstrated
no clear trend in number of trans-eQTL discoveries as we varied the number of PEER factors removed
(Supplementary Fig. 8). Further, failure to remove confounding factors could result in false positive trans-
eQTL associations [17]. Therefore, we opted to use the settings determined by the analysis of cis-eQTLs
for the trans-eQTL analysis as well. This aggressive correction, explained 59-78% of total variance in gene
expression levels (Supplementary Fig. 9a), however may lead to false negatives, reducing the signals for
broad effect trans-eVariants with many target genes. Indeed, several loci with numerous associations were
found in uncorrected data, but disappeared after controlling for PEER factors (Supplementary Fig. 9b-d).
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However, the trans-eVariants detected before PEER correction were enriched for association with known
technical confounders (Supplementary Fig. 10). With no ideal method available to optimize latent factor
correction for trans-eQTLs, we chose to aggressively remove potential confounders using the same settings
as the cis analysis.

PEER factors from each tissue were correlated with known technical and biological covariates recorded
for each sample and donor (Supplementary Fig. 11-12). The covariates that were most consistently as-
sociated with PEER factors include factors related to parameters of donor death, ischemic time, RIN, and
sequencing quality control metrics. Nucleic acid isolation and library construction batches and total se-
quencing depth were also moderately associated. Across tissues, the median percent variance explained
(PVE) by RIN of the set of PEER factors used for correction was 0.05, with a maximum PVE of 0.13
in heart – left ventricle. The PVE by these covariates of the expression data after PEER correction was
negligible – median 4 × 10−3 for RIN. Similarly, after correction, the detected trans-eVariants show little
association with known covariates. For example, the two tissues with the most trans-eQTLs, thyroid and
testis, show no association between RIN and any trans-eVariant at FDR 50%. In addition, we have observed
that minimal genetic signal is present in the PEER factors (Supplementary Fig. 13).

To control population effects on the discovery of eQTLs [18], we included the first three genotype PCs,
which capture the major population structure among GTEx donors including Caucasian, African American,
and Asian ancestry (Supplementary Fig. 4, and Section S2.5). Additionally, genotyping platform (Omni
5M or Omni 2.5M) and donor sex were included in the set of covariates in the association analysis.

6 Cis-eQTL mapping

Cis-eQTL mapping was performed using FastQTL [19]. The mapping window was defined as 1 Mb up-
and downstream of the transcription start site, and the adaptive permutation mode was used with the setting
--permute 1000 10000. For each tissue, variants in the VCF were selected based on the following
thresholds: the minor allele was observed in at least 10 samples, and the minor allele frequency was ≥
0.01. The beta distribution-extrapolated empirical P-values from FastQTL were used to calculate gene-level
q-values [20], and a false discovery rate (FDR) threshold of ≤ 0.05 was applied to identify genes with at
least one significant eQTL (“eGenes”).

To identify the list of all significant variant-gene pairs associated with eGenes, a genome-wide empirical
P-value threshold, pt, was defined as the empirical P-value of the gene closest to the 0.05 FDR threshold.
pt was then used to calculate a nominal P-value threshold for each gene based on the beta distribution
model (from FastQTL) of the minimum P-value distribution f(pmin) obtained from the permutations for the
gene. Specifically, the nominal threshold was calculated as F−1(pt), where F−1 is the inverse cumulative
distribution. For each gene, variants with a nominal P-value below the gene-level threshold were considered
significant and included in the final list of variant-gene pairs.

All components of the single tissue cis-eQTL pipeline are available at https://github.com/
broadinstitute/gtex-pipeline

6.1 Independent cis-eQTL mapping

Multiple independent signals for a given expression phenotype were identified by forward stepwise re-
gression followed by a backwards selection step. The gene-level significance threshold was set to be the
maximum beta-adjusted P-value (correcting for multiple-testing across the variants) over all eGenes in a
given tissue. At each iteration, we performed a scan for cis-eQTLs using FastQTL, correcting for all previ-
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ously discovered variants and all standard GTEx covariates. If the beta adjusted P-value for the lead variant
was not significant at the gene-level threshold, the forward stage was complete and the procedure moved on
to the backward stage. If this P-value was significant, the lead variant was added to the list of discovered
cis-eQTLs as an independent signal and the forward step moves on to the next iteration. The backwards
stage consisted of testing each variant separately, controlling for all other discovered variants. To do this,
for each eVariant, we scanned for cis-eQTLs controlling for standard covariates and all other eVariants. If
no variant was significant at the gene-level threshold the variant in question was dropped, otherwise the lead
variant from this scan, which controls for all other signals found in the forward stage, was chosen as the
variant that represents the signal best in the full model.

Using this approach, we were able to identify 1.3-fold more cis-eQTLs per tissue (Supplementary Fig.
14).

6.1.1 Multi-tissue independent cis-eQTL mapping

For analyses in the functional characterization of cis-eQTLs, we ran a modified version of forward stepwise
regression to select an ordered list of independent variants associated with a given gene across all tissues
types. In each step k, we identify variants associated with expression of each gene across tissues, and refer
to these as the ‘tier k variants’. In each tier k, for each tissue, Matrix-eQTL was run independently for each
gene that had a variant added to the model at every previous step 1..k − 1 (all genes are assessed in tier 1).
In each tier, any significant variants identified in tiers 1..k − 1 are included as covariates. Significant tier k
variants were assessed as follows. For each tissue, we obtained gene-level P-values for tier k via eigenMT
[21]. Genome-wide significance of multiple independent variants per gene (in each tissue independently)
was assessed via Benjamini-Hochberg (FDR < 0.05) for all gene-level P-values tested in tier k combined
with all those tested in previous tiers [22]. To identify the cross-tissue tier k variant for a given gene, we
selected the variant (out of all variants genome-wide significant for the gene in at least one tissue) with the
smallest geometric mean P-value (across tissues). If no variant was genome-wide significant, no cross-tissue
tier k variant was selected for that gene, and that gene will be estimated to have k − 1 total independent
cross-tissue variants. If a particular tissue’s tier j genome-wide significant variant for a particular gene
differed from the cross-tissue tier j variant for the same gene, the P-value of that tissue’s tier j genome-
wide significant variant was used in the Benjamini-Hochberg procedure. If a particular gene’s cross-tissue
variant for tier k does not meet genome-wide significance in all tissues in the tier (k+1) step due to increased
multiple testing, that gene will be conservatively considered to have (k−1) independent cross-tissue variants.

Normalized H-C contact data were collected from published data [23]. We averaged Hi-C counts be-
tween the 5kb window around each variant and the 5kb window around the gene TSS, of primary and sec-
ondary eVariants compared to background variant-TSS pairs. Background variant-TSS pairs were matched
for MAF and distance to TSS.

7 Trans-eQTL Quality Control

Quality control for trans-eQTLs was performed as follows. Mappability of every k-mer of the reference
human genome (hg19) computed by the ENCODE project35 has been downloaded from the UCSC genome
browser (accession: wgEncodeEH000318, wgEncodeEH00032)76. We have computed exon- and untrans-
lated region (UTR)-mappability of a gene as the average mappability of all k-mers in exonic regions and
UTRs, respectively. We have chosen k = 75 for exonic regions, as it was the closest to GTEx read length
among all available values of k. However, as UTRs are generally small regions, and 36 is the smallest among
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all possible values of k, we have chosen k = 36 for UTRs. Finally, mappability of a gene is computed as
the weighted average of its exon-mappability and UTR-mappability, weights being proportional to the to-
tal length of exonic regions and UTRs, respectively. We excluded from association testing any gene with
mappability < 0.8.

The set of genetic variants tested have also been reduced by first filtering out all variants with MAF
< 0.05 in donors sampled for the tissue being tested (reducing the variant set to 6,226,121), and then fil-
tering out all variants that are annotated by RepeatMasker to belong to a repeat region http://www.
repeatmasker.org, release library version 20140131 for hg19. This filtering reduced the number of
variants tested by roughly 53.6%, from 6,226,121 variants to 2,889,379. Genotyping in these regions re-
mains subject to potential errors from probe mislocalization due to sequence similarity across the genome.
Furthermore, nearby linked variants can still capture signal from these regions for strong associations.

Next, we aligned every 75-mer in exonic regions and 36-mers in UTRs of every gene with mappability
below 1.0 to the reference human genome (hg19) using Bowtie (v 1.1.2) [24]. If any of the alignments
started within an exon or a UTR of another gene, then that pair of genes are cross-mappable. We excluded
from consideration any variant-gene pair where the variant is within 100 Kb of a gene that cross-maps with
the potential trans-eQTL target gene.

While controlling for three genotype PCs should capture most broad effects of ancestry, we additionally
checked for residual evidence of strong correlation with a larger set of 20 genotype PCs (Supplementary
Table 12). We observed a modest increase in correlation among trans-eVariants (Supplementary Fig. 15).
While we opted not to apply further filtering, we have flagged any trans-eVariant with maximum correlation
greater than 99% of the levels observed among random variants for use in downstream analyses that may
depend on ancestry.

8 Trans-eQTL False Discovery Rate

We assessed FDR in the trans-eQTL hits in two ways. First, we computed, per tissue, the Benjamini-
Hochberg FDR using the Matrix eQTL P-values from an all genes by all variants association test (genome-
wide FDR). Second, we computed the adjusted gene-level FDR by taking, per tissue, the most extreme
P-value per gene, multiplying that P-value by 1,000,000 (to account for the number of effective independent
tests in a trans-association; borrowed from the effective number of tests assumed in the canonical WTCCC
Bonferroni correction of 5×10−8 with a threshold of 0.05), and using Benjamini-Hochberg on those adjusted
extreme P-values across genes to compute the FDR (gene-level FDR). We set a universal FDR threshold of
10% FDR.

Using the genome-wide FDR, we found 94 genes—93 unique genes, with one found in both testis and
thyroid—with one or more trans-eQTLs. Using the gene-level FDR, we found a total of 46 trans-eGenes,
where 42 overlap with the 93 genes in the genome-wide FDR set, and four additional genes not found in
the genome-wide FDR. Because of trans-eVariants impacting multiple eGenes, we found 43 trans-eVariants
at gene-level FDR of 0.1. Of the 51 eGenes that were discovered at the genome-wide FDR but not at the
gene-level FDR, 17 of those are gene-level FDR≤ 0.2 and all 51 are gene-level FDR≤ 0.4; the results from
the two approaches are not dramatically different. We report all of these results in Extended Data Table 1.
For all downstream analyses, we used the genome-wide FDR set.
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9 Intra-chromosomal long-range eQTL mapping

Phased allelic expression data were collected for all LD pruned eQTLs (FDR ≤ 0.1) and only those eQTLs
with data in at least ten eVariant homozygotes and heterozygotes were used. To remove cases where strong
allelic imbalance was seen in eQTL homozygotes, the top 5% of eQTLs sorted by homozygote allelic
imbalance were filtered. To minimize the number of phasing errors that occur at long, chromosome wide
distances, we developed a model that predicts the probability of phasing error as a function of the minor
allele frequency of both the eVariant and a coding variant where ASE is assessed, as well as the distance
between them. We used this model to filter cases where the predicted probability of correct phasing was <
99%. A beta-binomial mixture model was then used to determine if the allelic data supported the presence
of a cis-eQTL.

To identify long-range cis-eQTLs, from eQTLs with TSS distance > 5 Mb the top eQTL per gene
was selected, and multiple testing correction was performed using the Benjamini-Hochberg FDR method
on a per-tissue basis. We next quantified the proportion of eQTLs with significant (nominal P ≤ 0.01)
ASE supported evidence of cis-regulation as a function of distance to eGene TSS. Although we attempted
to reduce phasing error, we were unable to accurately estimate the remaining error, so we compared the
observed proportion of cis-eQTLs to what would be expected under the worst case scenario of phasing
error. Performance under the worst case scenario was determined by introducing phasing error between
eVariants and ASE data at a rate of 50% to LD pruned eQTLs (FDR ≤ 0.1) within 100 Kb of the TSS,
which were assumed to act in cis, and then determining the number of significant (nominal P ≤ 0.01) ASE
supported cis-eQTLs that could be identified as a function of eQTL effect size.

10 Trans-eQTL restricted discovery association mapping

To improve statistical power to identify trans-eQTLs, we filtered our discovery genotypes in two ways. First,
we restricted our association testing to a restricted subset of variants to control for linkage 109 disequilibrium
(LD). To do this, we pruned the set of genotyped and imputed variants to have local genotype R2 < 0.5
by random selection, agnostic to gene expression levels or functional annotation of variants. This LD-
pruning led to a set of variants that included approximately 10% of the original variant set. While this
may result in false negatives by eliminating some of the strongest associations, it also has the potential to
reduce false positives that are not supported by associations with well-correlated variants in the same LD
block. Performing association mapping in this reduced set, we found 54 variants affecting 47 genes across
17 tissues (FDR ≤ 0.1). Next, we performed a trans-eQTL association test restricting the variants to the
set of cis-eVariants (top variant per cis-eGene) and testing for trans association with all genes on any other
chromosome than the variants own. In the cis-eQTL restricted analysis, we found 41 eVariants affecting 33
genes across 17 tissues (FDR ≤ 0.1). All of these results are reported in Supplementary Table 13.

11 Allele-specific expression

Allele-specific expression was performed as described in the Online Methods. We investigated several
distributional and quality-control properties of GTEx ASE including: the number of genes with tested ASE
variants per donor, the number of genes with tested ASE variants per tissue, the number of tissues with
tested ASE variants per gene, the number of genes with significant (binomial test versus 0.50, 5% FDR)
ASE variants per donor, the number of genes with significant (binomial test versus 0.50, 5% FDR) ASE
variants per tissue, the number of tissues with significant (binomial test versus 0.50, 5% FDR) ASE variants
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per gene and the distribution of reference ratios (reference allele count / (reference + alternative allele count))
(Supplementary Fig. 16).

12 Multi-tissue analysis

12.1 Hierarchical FDR control for cis-eQTLs

We applied a separate hierarchical multiple testing correction method to identify multi-tissue eGenes [25,
26]. First, we constructed a p-value for each eGene across tissues using the Simes combination rule [27]
on the tissue-specific beta-approximation P-values provided by FastQTL. Storey’s q-value method [28] was
then used to identify eGenes that are active in any tissue. To identify the specific tissues in which these
eGenes are regulated, we applied the Benjamini and Bogomolov procedure [29], a special case of the more
general procedure proposed in [26] at the 0.05 level. This approach not only allowed us to control the FDR
for the discovery of eGenes across tissues and the expected average proportion of false tissue discoveries
across these eGenes, but also to gain power to detect eGenes in tissues with smaller sample sizes when there
is evidence from other tissues supporting their regulation.

12.2 Hierarchical FDR control for trans-eQTLs

We applied a hierarchical FDR control approach to identify significant trans-eVariants across all variants,
genes, and tissues as a second assessment of tissue-specificity of trans-eQTLs [25,26]. As input, we consid-
ered 306,061 variants from the LD-pruned set that had a nominal trans association P ≤ 1.0× 10−7 with at
least one gene. To identify eVariants, the genes to which they are associated, and the tissues in which these
associations are present, we performed a hierarchical testing procedure [25, 26]. Specifically, we used a
three-level version of the multi-level hypothesis testing method [26] with variants in Level 1, genes in Level
2, and tissues in Level 3 of our hypothesis tree. P-values were defined starting from the Level 3 hypotheses
regarding the association of variant i to the expression of gene j in tissue k, where we used the association
P-value pijk calculated by Matrix eQTL. P-values pij• corresponding to Level 2 the variant × gene null hy-
potheses of no association between variant i and gene j in any tissue were then calculated using Simes [27],
and p-values pi•• corresponding to the Level 1 null hypotheses of no association between variant i and any
gene in any tissue were also calculated using Simes. We then applied the treeBH procedure [26] on pi•• to
identify eVariants, the genes these eVariants control, and the tissues in which this regulation is present. This
three-step procedure controls the FDR of eVariants, the average expected proportion of false variant-gene
associations across eVariants [25], and the expected weighted average of false tissue discoveries for the
selected variant-gene pairs (weighted by the size of the eVariant and eGene sets) to the target FDR ≤ 0.1.

12.3 Multi-tissue eQTL sharing

We ran Meta-Tissue on the subsampled cis-eQTL data for each tissue (n = 70) and considered an cis-eQTL
to be active in a tissue if it had a Meta-Tissue m-value ≥ 0.9 in that tissue. For genes expression in both
tissues, we measured the sharing of eQTLs affecting those genes with the Jaccard index:

J(t1, t2) =
|t1 ∩ t2|

|t1|+ |t2| − |t1 ∩ t2|

where t1 and t2 are the set of eQTLs active in the first and second tissues respectively. We compared the
Jaccard index for each pairwise combination with the correlation of expression between those tissues. The
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Pearson’s product-moment correlation between each pair of tissues was estimated using the median log2-
transformed RPKM values for each gene in each tissue. In general we saw a trend whereby tissues with
highly correlated expression shared a greater proportion of multi-tissue eQTLs (Supplementary Fig. 17).
Pairwise comparisons between brain tissues nicely demonstrated this phenomenon.

13 Fine-mapping analyses

13.1 CAVIAR

CAVIAR (CAusal Variants Identification in Associated Regions) [30] uses LD structure to model the ob-
served marginal test statistics for each eGene as following a multivariate normal distribution (MVN). Ap-
plying this model, CAVIAR can define a credible set containing all causal variants with probability ρ. To
define these credible sets in each tissue, we used a threshold of ρ = 90%. The mean credible set size was
calculated for the top 1000 cis-eQTLs per tissue (Supplementary Fig. 18a).

13.2 CaVEMaN

We used CaVEMaN (Causal Variant Evidence Mapping with Non-parametric resampling) to estimate the
probability that an eVariant was a causal variant (Brown et al., submitted). We used a non-GTEx reference
cis-eQTL data set from subcutaneous adipose tissue, lymphoblastoid cell lines, skin, and whole blood, to
simulate causal variants with characteristics matching genuine cis-eQTLs [31] (effect size, residual variance,
minor allele frequency, and distance to the TSS). For each simulation, we calculated the proportion of times
the simulated causal variant was among the ith most significant eVariants and denoted this proportion as
pi. For each lead eVariant in GTEx, we generated a “single-signal” expression phenotype by controlling
for all covariates fitted in the cis-eQTL mapping and all other eVariants for the gene except the eVariant
whose signal we wished to preserve. These data were sampled with replacement 10,000 times and cis-
eQTL mapping was performed on each resample. The proportion of times a given eVariant was ranked i
was calculated, denoted Fi. The CaVEMaN score is then defined as

∑10
i=1 pi · Fi. To calibrate CaVEMaN

scores, across all genes and tissues simulated (removing blood as an outlier) we divided the CaVEMaN
scores of the peak variants into twenty quantiles. Within each quantile, we calculated the proportion of
times the lead variant was the causal variant and then drew a monotonically increasing smooth spline from
the origin, through the 20 quantiles, to the point (1, 1) using the gsl interpolate functions with the steffen
method (gsl-2.1, https://www.gnu.org/software/gsl/). This function provides our mapping
of CaVEMaN score of the lead variant onto the probability it is the causal variant, calibrated using the
simulations (Supplementary Fig. 18b).

14 Effect-size calculations

14.1 cis-eQTL effect size

cis-eQTL effect size was defined as the ratio between the expression of the haplotype carrying the alter-
native eVariant allele to the one carrying the reference allele in log2 scale and was calculated using the
method in companion work [32]. In short, the model assumes an additive model of expression in which the
total expression of a gene in a given genotype group is the sum of the expression of the two haplotypes:
e(genotype) = 2er, er + ea, 2ea, for reference homozygotes, heterozygotes, and alternate homozygotes,
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respectively, where er is expression of the haplotype carrying the reference allele and ea, expression of the
haplotype carrying the alternative allele is: ea = ker where 0 < k <∞.

cis-eQTL effect size is represented in log2 scale as s = log2 k, and is capped at 100-fold to avoid outliers
(|s| < log2 100). Expression counts were retrieved for all top eGenes in all tissues and PEER corrected. Data
was log-transformed with one pseudo-count to stabilize the variance. The model was fit using non-linear
least squares to derive maximum likelihood estimates of the model parameters k and er. A similar maximum
likelihood approach with additive effects and multiplicative errors (prior to log transformation) [33] was
compared in several tissues to the effect size estimates reported here, exhibiting rank correlation ∼ 0.98.
Confidence intervals for the effect sizes were derived using bias corrected and accelerated (BCa) bootstrap
with 100 samples.

For all analyses in a given tissue only the top eVariant per eGene was used. Only those eQTLs whose
95% confidence interval of the effect size estimate did not overlap zero were used for downstream analysis.
To control for differences in power due to eVariant allele frequency, the effect of MAF on eQTL effect size
was estimated using LOWESS regression (Matlab function malowess: span=0.2, robust=true),
and was subtracted from the effect sizes on a per tissue basis.

14.2 ASE effect size

For each sample, haplotypic expression at all eGenes was calculated by summing counts from all phased,
heterozygous variants. For a given cis-eQTL variant, assume xi is the number of RNA-seq reads aligned to
one haplotype, and yi is the total number of reads aligned to either haplotype in the ith individual. Regulatory
effect size of the cis-eQTL was calculated as median log-ratio: s(x, y) = median[log2(xi) log2(yi − xi)].
Effect sizes were calculated for cis-eQTLs for which 10 or more donors with yi ≥ 10, and the effect sizes
were constrained to be less than 100 fold (|s(x, y)| < log2 100). Confidence intervals for the effect sizes
were derived using BCa bootstrap with 100 samples .

15 Mendelian randomization (MR) for shared cis-eQTLs and trans-eQTLs

For every trans-eQTL (genome-wide FDR ≤ 0.1) and for every cis-eQTL (P ≤ 10−5), we identified the
variants in the intersection of cis-eQTL RSIDs and trans-eQTL RSIDs. Doing this, we found 296 joint
cis-eQTLs and trans-eQTLs. In order to measure the regulatory causal effect of cis-eGenes to trans-eGenes
for our set of 296 cis-trans-eQTLs, we used an instrumental variable (IV) analysis, using the Mendelian
randomization method implemented by McDowell et al. [34]. After correcting the expression values for the
same covariates as the main analysis, we calculated the Wald test statistic, tMR, as follows:

tMR =
β2MR

var(βMR)
(1)

βMR =
β̂y,z

β̂x,z
(2)

var(βMR) = σ2(xTPzx)
−1 (3)

σ2 =
(y − xβMR)

T (y − xβMR)

n− ν
(4)

Pz = z(zT z)−1zT , (5)

(6)
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where z is our instrumental variable (eVariant), x is our cis-eGene expression levels, y is our trans-eGene
expression levels, n is the number of samples, and β̂y,z and β̂x,z each represent the trans-eQTL and cis-
eQTL effect sizes, respectively. The degrees of freedom, ν was set to 3. We then computed the p-value
corresponding to the Wald test statistic.

In addition to our 296 cis-trans-eQTLs, we also performed this MR test for the thyroid and skeletal
muscle examples in the main text - for thyroid, rs1867277 was the IV, TRMO and FOXE1 were cis-eGenes,
and TMEM253 and ARFGEF3 were trans-eGenes. For skeletal muscle, rs2706381 was the IV, IRF1 was the
cis-eGene, and PSME1 and ARTD10 were the trans-eGenes. The null distribution was generated by taking
100 permutations of the trans-eGene value and calculating the Wald test statistic (Fig. 4a).

16 Replication of cis- and trans-eQTLs

To assess replication of cis- and trans-eQTLs, we examined P-values for matched variant-gene pairs in the
TwinsUK data [35]. For the cis-eQTLs, the two GTEx adipose tissues were compared to the TwinsUK
subcutaneous adipose, the two GTEx skin tissues against the TwinsUK sun-protected skin tissue, and GTEx
LCL and whole blood tissues against these same tissues in the TwinsUK dataset. For the trans-eQTLs, all
GTEx hits were compared to the matched gene-variant pair in all four TwinsUK tissues.TwinsUK RNA-seq
data were mapped to the GRCh37 reference genome [36] using GEM version 1.7.1 [37], and genes were
quantified to RPKM values using the GENCODE 19 annotation [38].

To assess cis-eQTL replication, genes with> 50% zero RPKM values across donors were removed from
further analysis. RPKM values were scaled and centered, and then 50 principal components were regressed
out (25 for blood due to the smaller sample size). Data were then mapped to a normal distribution. The
lmer R package [39] was used to calculate a P-value for association between gene expression and genetic
variant, controlling for family structure using random effects.

To assess trans-eQTL replication, RPKM values were transformed to the quantiles of the normal distri-
bution. The lmer R package [39] was used to calculate a P-value for association between gene expression
and genetic variant, controlling for family structure, primer index and date of sequencing using random
effects, and GC content and insert size of the sequencing sample, age and BMI of the donor as fixed effects.

Finally, we evaluated replication of two trans-eQTL associations from LCLs identified in the complex
trait-associated variant-restricted analysis. We tested these trans-eQTLs in the GEUVADIS data (N = 462)
[40], but did not find signal of association for either eQTL (P ≤ 0.93, rs3125734; P ≤ 0.64, rs10520789).

17 Thyroid-specific TF FOXE1 candidate master regulator

In the trans-eQTLs discovered in thyroid tissue samples, post-hoc analysis demonstrated that PEER cor-
rection dampened broad regulatory effects of the 9q22 locus. To explore the drivers of this broad distal
regulation, we examined two nearby genes, TRMO and FOXE1, a different regulatory effect was observed,
where association was dampened for FOXE1 (P ≤ 2.0 × 10−2 and P ≤ 0.54, before and after PEER cor-
rection, rs1867277) and induced for TRMO (P ≤ 6.7 × 10−7 and P ≤ 8.3 × 10−13, before and after PEER
correction, rs1867277). Furthermore, using FOXE1 as the cis-target gene, co-localization posterior prob-
ability [41] of the cis-eQTL with the trans-eQTL changed from 0.044 and 0.28 before PEER correction
to 0.055 and 0.055 after PEER correction for TMEM253 and ARFGEF3, respectively. On the other hand,
co-localization posterior probability was > 0.99 for both TMEM253 and ARFGEF3 when TRMO was con-
sidered the cis-eGene after PEER correction, while it was > 0.97 and > 0.99, respectively, before PEER
correction.
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18 TCGA thyroid RNA-seq analysis

To replicate trans-eVariants in thyroid, we used Thyroid Carcinoma (THCA) RNA-seq and genotype ar-
ray data from The Cancer Genome Atlas (TCGA). Filtering out tumor normal and metastatic samples, we
restricted our analysis to 498 primary tumor samples. Next, after log transforming RNA-seq RSEM mea-
surements, we ensured that expression of each gene follows a Gaussian distribution by projecting each gene
expression levels to the quantiles of a standard normal. To account for noise and confounding factors in
RNA-seq measurements, we corrected the data by 35 PEER factors. Using a linear model while adjusting
for 35 PEER factors with MatrixeQTL, we tested the effect of each variant on chr 9 position 100600000 -
100670000 on expression levels of all trans genes. We used the Benjamini-Hochberg method to correct for
multiple hypotheses testing (assessed only among 24 variants tested). Genes with FDR≤ 0.1 were called as
trans-eGenes.
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Supplementary Figure 1. Distribution of imputation quality score of autosomes, stratified by minor
allele frequency (MAF) for the autosomal imputed variants (variants and indels). The histograms
were plotted using all 14,390,153 variants obtained after imputation of 451 samples, before filtering. Bin
size: 0.01. INFO: imputation quality score of IMPUTE2.
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Supplementary Figure 2. Evaluation of imputation accuracy. (a) Comparison of alternative allele
dosages between imputed and hard genotype calls across 183 pilot phase samples. R2 was computed
across samples for each variant in the 2.5S set present on Illumina’s Omni 5M and absent from the 2.5M
array. (b) Comparison of haploid imputed (phased) calls to the standard diploid imputed calls. R2 was
computed between the ALT dosage of the standard imputed variants (continuous variable between 0 and 2)
and haploid imputed variants, for each variant across the 450 samples. The R2 distributions are shown for
common variants (blue) and low frequency variants (red). MAF: minor allele frequency.
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Supplementary Figure 3. Distribution of the IMPUTE2 imputation quality score, INFO, stratified by
minor allele frequency (MAF) for the imputed variants on chromosome X for the PAR1, PAR2 and
nonPAR regions. The histograms were plotted using all variants obtained after imputation of 451 samples,
before QC filtering. Bin size: 0.01.
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Supplementary Figure 4. Principal component analysis of 451 GTEx samples using a pruned set of
variants from the Omni 2.5M set of variants. (a) First three genotype principal components, stratified by
array platform (183 samples on Omni 5M array; 168 samples on Omni 2.5M array). (b) Variance explained
by first 20 genotype principal components (Eigenvalues). (c) Association of genotype principal
components with array platform (Omni 5M vs. 2.5M). Principal components were computed using a
pruned set of variants.
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Supplementary Figure 5. Summary of the 44 tissues and 7,051 samples used for eQTL analyses from
the GTEx v6p release. Frontal Cortex and Cerebellar Hemisphere were sampled in duplicate: each was
sampled on site during initial tissue collection (BRNCHA and BRNCTXA), and again after the brain was
received by the brain bank (BRNCHB and BRNCTXB). Two cell types were included: an
EBV-transformed lymphoblastoid cell line from blood (LCL) and cultured primary fibroblasts from fresh
skin (FIBRBLS). RIN: RNA integrity number. RIN, ischemic time, and donor age distributions for each
tissue are shown as density plots, with the median indicated in black.
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Supplementary Figure 6. MDS plot of tissue transcriptomes. (a) Clustering of all 44 tissues and (b) all
brain tissues highlights tissue identities (includes the two duplicate tissues).
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Supplementary Figure 7. Identification of the optimal number of PEER factors for hidden covariate
correction during cis-eQTL analyses. The number of PEER factors was chosen to maximize cis-eGene
discovery, and this optimization was performed for three sample size bins: tissues with < 150 samples,
tissues with ≥150 and <250 samples, and tissues with ≥250 samples available. The cis-eQTL discovery
pipeline was run with increments of 5 PEER factors for the 12 tissues shown, using a reduced number of
permutations (100 instead of the adaptive 1,000-10,000 used for all other analyses). Based on these results
and to avoid potential overfitting, 15, 30, and 35 PEER factors were selected, respectively.
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Supplementary Figure 8. Sample covariates associated with PEER factors in each tissue. For each
tissue, adjusted (R2) reflecting the proportion of variance explained by each sample-specific covariate, for
the entire PEER component removed from the expression data. Each cell reflects variance explained for a
tissue/covariate pair, color scale at bottom. Grey cells represent pairs with insufficient data for estimation.
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Supplementary Figure 9. Donor covariates associated with PEER factors in each tissue. For each
tissue, adjusted (R2) reflecting the proportion of variance explained by each donor-specific covariate, for
the entire PEER component removed from the expression data. Each cell reflects variance explained for a
tissue/covariate pair, color scale at bottom. Grey cells represent pairs with insufficient data for estimation.
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Supplementary Figure 10. Genome-wide association with PEER factors. (a) Number of significant
associations of genetic variants genome-wide with PEER factors, across all factors (FDR ≥ 0.05;
Benjamini-Hochberg). Associations were calculated for each factor using PLINK, with the options
“--linear hide-covar --adjust --keep-allele-order --maf 0.01 --min-ac 10 --geno 0.05”, and genomic-control
corrected P-values were used. The top three genotype PCs, sex, and genotyping platform were included as
covariates. (b) Quantile-quantile plots for Thyroid and Breast – Mammary tissues, computed across all
PEER factors. (c) Comparison of association P-values between replicate tissues (PAXgene vs. frozen).
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Supplementary Figure 11. Conditionally independent cis-eQTL discovery as a function of sample
size. Mirroring cis-eGene discovery, independent cis-eQTL discovery increases as a function of sample
size, recovering up to 1.3-fold more cis-eQTLs per tissue.
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Supplementary Figure 12. Number of trans-eQTLs and trans-eGenes as a function of PEER factors
for six tissues. The number of trans-eQTLs and trans-eGenes are plotted as a function of PEER factors
(increments of 5), for the following tissues: (a) esophagus mucosa, (b) skeletal muscle, (c) transverse
colon, (d) thyroid, (e) sun exposed skin, and (f) testis. Different tissues show very different, and often not
smoothly varying or monotonically increasing, numbers of trans-eQTLs identified with different numbers
of PEER factors removed, as opposed to cis-eQTLs, which show a more consistent pattern. Along with the
fact that we have insufficient statistical power or number of trans-eQTLs to tune the number of PEER
factors directly without facing potential over-fitting to spurious signal, this figure shows the challenges of
controlling for unobserved confounders in trans-eQTL study and supports our reasoning for not tuning the
number of PEER factors directly for trans-eQTLs.
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Supplementary Figure 13. PEER correction removes broad expression trends affecting trans-eQTL
discovery. (a) Distribution of the variance explained (across all genes) by the PEER factors used as
covariates in trans-eQTL association testing in each of the 44 tissues, grouped by the number of PEER
factors used for each tissue (only 15, 30, or 35 PEER factors were used as covariates in eQTL testing
depending on tissue sample size; see Online Methods). (b-c) Location and strength (− log10(P-value)) of
trans associations in vagina, quantified based on expression data (b) before and (c) after PEER correction.
Each point is a trans-eQTL variant-gene pair where the x-axis is the variant location and the y-axis is the
gene TSS. Data points are colored according to − log10(P-value) of association testing. Vertical bands
reflect loci with numerous targets in the data before PEER factor correction. These vertical bands disappear
post PEER correction due to the stringent condition of applying the same amount of PEER correction as
the cis-eQTL mapping. The same plot is replicated for stomach, (d) before and (e) after PEER correction.
Box plots depict the IQR, whiskers depict 1.5 x IQR.
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Supplementary Figure 14. Trans-eVariants lost after PEER correction are enriched for association
with known covariates. Trans-eVariants that were detected in raw expression data but lost after PEER
correction were tested for association with known sample covariates using a linear model. This
quantile-quantile plot shows − log10(P-values) of trans-eVariants lost after PEER correction as compared
to matched random variants, with each tissue shown as a distinct color. Combined across tissues, the
association − log10(P-values) are significantly larger than random (Wilcoxon rank sum test; P
≤ 2.2× 10−16).
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Supplementary Figure 15. Correlation between trans-eVariants and genotype principal components.
Distribution of the largest correlation between the top 20 genotype principal components and both the 93
trans-eVariants (single top variant per eGene) and 465 randomly selected variants matched for MAF. The
two distributions are significantly different, with the trans-eVariants being enriched for higher correlation
with genotype PCs (Wilcoxon rank sum test, P ≤ 0.029) .
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Supplementary Figure 16. Global ASE statistics. (a) Histogram of the number of genes with tested ASE
variants per donor. (b) Histogram of the number of genes with tested ASE variants per tissue. (c)
Histogram of the number of tissues with tested ASE variants per gene. (d) Histogram of the number of
genes with significant (binomial test versus 0.50, 5% FDR) ASE variants per donor. (e) Histogram of the
number of genes with significant (binomial test versus 0.50, 5% FDR) ASE variants per tissue. (f)
Histogram of the number of tissues with significant (binomial test versus 0.50, 5% FDR) ASE variants per
gene. (g) Distribution of reference ratios (reference allele count / (reference + alternative allele count)) at
ASE variants across all tissues. (h) Boxplot of reference ratios at ASE variants for four tissues (APSBQ =
adipose – subcutaneous, BRNCHA = brain – cerebellum, MSCLSK = muscle – skeletal, WHLBD = whole
blood). Gene level measurements of haplotype expression were calculated by aggregating counts per
sample across all heterozygous variants with ASE data within the gene using population phasing. The
following filters were applied on ASE data: total coverage ≥ 8 reads, no mapping bias in simulations [42],
UCSC mappability > 50, and no significant (P < 0.01) evidence that variant is monoallelic in expression
data [43]. Box plots depict the IQR, whiskers depict 1.5 x IQR.
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Supplementary Figure 17. Tissues with similar expression patterns are more likely to share
cis-eQTLs. For each gene, we calculated the median RPKM across the 70 donors used in the subsampling
analyses in each tissue. Pearson r2 values were then calculated in a pairwise fashion between tissues on
log2-transformed median RPKM values, using only genes expressed in both tissues with a significant
multitissue eQTL identified by the subsampled Meta-Tissue analysis. We then measured the sharing of
multitissue eQTLs between each pair of tissues using the Jaccard index, where each eQTL was active in a
tissue if it had an m-value > 0.9. Each point represents a comparison between two of the 44 tissues:
comparisons between brain tissues are shown in yellow; comparisons with skeletal muscle are shown in
purple; comparisons with whole blood are shown in magenta.
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Supplementary Figure 18. Fine-mapping of cis-eQTLs. (a) Mean 90% credible set size (and its standard
error) is plotted for the top 1,000 cis-eQTLs against the tissues sample size. (b) Distributions of CaVEMaN
probabilities that lead cis-eQTLs for each tissue are causal variants (boxplots; x-axis) for each tissue
(y-axis, by color). Tissues are sorted in decreasing order of sample size from top to bottom. Box plots
depict the IQR, whiskers depict 1.5 x IQR.
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Supplementary Table 1. Sample and variant Quality Control (QC) of merged Illumina Omni 5M and
Omni 2.5M genotypes, pre-imputation. The Omni 5M or 2.5M genotypes of 455 GTEx donors were
combined by merging the overlapping 2.5M set of variants. 450 donors remained after sample QC
(excluding individuals with Klinefelter syndrome, related donors, replicate samples and a chr17p trisomy
donor). The Hardy-Weinberg Equilibrium (HWE) test was performed using donors of European descent
only (N= 378). The predicted genotype missingness using surrounding haplotypes was performed using
the PLINK command: "--test-mishap --fisher". The testing of association with chemistry plate
batch was performed using the PLINK command: "--loop-assoc --fisher". Note that the sum of
variants removed or retained exceeds the starting number of variants, due to partial overlap between
variants from the different QC steps.

QC Steps #
Unique GTEx
individuals

# Flagged
samples

# Variants
kept

# Variants
removed

Pre-array Merging QC

Original data 455 - 2,307,617 -
1. Allele frequency association
test between samples on Omni
5M and Omni 2.5M

455 - 2,307,615 2
(rs2300699,
rs4961559)

2. Remove replicate variants
with the same chromosome
position but different variant
IDs

455 - 2,307,261 354

3. Variants whose REF and ALT
alleles did not align between
Omni 2.5M and Omni 5M

455 - 2,307,260 1 (rs2040962)

4. Remove strand ambiguous
variants (A/T, C/G), as many
misaligned between the arrays

455 - 2,236,981 70,267

Post-array Merging, Pre-imputation QC

Merged Omni 5M and 2.5M
samples

455 - 2,236,981 -

5. Exclude variant genotyping
call rate < 95%

455 - 2,193,089 43,892

Sample QC steps
6. Exclude Individuals with call
rate < 98%

455 - 2,193,089 -

7. Sex check (Chr X
heterozygosity test)

454 1
donor

2,193,089 -

8. Heterozygosity test (per
sample)

454 - - -

9. Genome identity-by-descent (IBD) 454 - 2,193,089 -
Sample contamination 454 - 2,193,089 -
Cryptic relationships (Pi HAT>0.1875) 454 3 donors 2,193,089 -
Sample duplicates 451 - 2,193,089 -

10.Exclude monomorphic
variants

451 - 2,013,620 179,469

11. Exclude variants with call
rate < 98%

451 - 1,931,034 82,586

12. Exclude variants with
differential missingness
between Omni 2.5M and 5M
arrays (miss> 0.02 with P < 0.05)

451 - 89,411

13.Variant-level tests
Testing HWE (p< 1× 10−6) 451 - 279
Genotype missingness predicted using

surrounding haplotypes (p< 1× 10−8)
451 - 2,710

Testing for association with chemistry
plate batch (P< 1× 10−8)

451 - 11,613

Variants with heterozygous haploid
genotypes on sex chromosomes in males

451 - 636

SubTotal 451 - 1,883,274 309,815
Total 451 4 1,883,274 424,343

Post-Imputation sample QC

Exclude chr17 trisomy donor
(GTEX-UPIC; identified after
imputation performed)

451 1 -

Total 450 - 1,883,274 -

Number of variants that overlapped between the Omni 2.5M and 5M arrays.

12 variants were lost during format conversion from VCF to .tped using VCFtools.

One donor with Klinefelter syndrome genotyped on Omni 2.5M was removed; 2 additional Klinefelter donors were

previously removed from the Pilot phase analysis freeze.

One donor from a related pair and two donors from a related trio were removed based on an identity-by-descent (IBD) value

of π̂ > 0.1875 that represents a relationship between third- and second-degree relatives. Genome-wide variants were used for

the IBD calculation.
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Supplementary Table 2. Concordance of minor allele dosage between hard calls and imputed
genotypes across 183 GTEx donors genotyped on Omni 5M array using the 2.5S portion of variants
(c. 1.8 million). For concordance analysis, the Omni 5M genotypes were downsized to the 2.5M set of the
array, and the 2.5S variants were imputed back into the samples, using 1000 Genomes Phase I v3 as the
reference panel.

INFO
(in OMNI 2.5M)

MAF Mean R2 Median R2 # Variants

> 0.4
5-50% 0.9364 0.9861 450,178
1-5% 0.72 0.7979 552,807
<1% 0.6198 0.6648 336,005

> 0.9
5-50% 0.9713 0.9893 405,031
1-5% 0.9073 0.9717 273,847
<1% 0.8499 0.9994 118,170

Supplementary Table 3. Average imputation quality score (INFO) of autosomal variants stratified by
minor allele frequency (MAF). INFO was computed using IMPUTE2. SNPs and indels were tested. The
values were computed using all 14,390,153 variants obtained after imputation of 451 samples, before
applying any variant filters.

MAF Mean INFO Median INFO # variants

0-0.01 0.860 0.925 2,658,149
0.01-0.05 0.888 0.951 6,990,740
0.05-0.1 0.947 0.989 1,306,106
0.1-0.2 0.962 0.993 1,532,517
0.2-0.3 0.969 0.994 1,107,100
0.3-0.4 0.971 0.994 946,939
0.4-0.5 0.972 0.994 893,237
0.05-0.5 0.963 0.993 5,785,899
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Supplementary Table 4. Assessment of imputation accuracy post-variant QC. Concordance between
imputed and directly called genotypes from 183 GTEx Pilot phase samples out of 450 imputed samples
was computed, using the 2.5S set of variants present only on the Omni 5M array. Mean and median
concordance values (R2) were computed for common (MAF= 0.05− 0.5) and low frequency
(MAF= 0.01− 0.05) 2.5S variants, separately, and for incremental IMPUTE2 INFO cutoffs starting with
INFO> 0.4. Discrete values 0,1,2 were used for the hard calls, and continuous variables for the imputed
calls. INFO: measure of imputation confidence computed by IMPUTE2. MAF: minor allele frequency.

A. 0.05 ≤ MAF ≤ 0.50

IMPUTE2 INFO Mean R2 Median R2 # Variants tested

>0.4 0.9313 0.9854 474,204
>0.5 0.9325 0.9854 473,490
>0.6 0.9357 0.9856 471,359
>0.7 0.9423 0.9861 465,920
>0.8 0.9532 0.9871 453,384
>0.9 0.9688 0.9891 423,106

B. 0.01 ≤ MAF ≤ 0.05

IMPUTE2 INFO Mean R2 Median R2 # Variants tested

>0.4 0.7226 0.8037 571,662
>0.5 0.7298 0.8092 564,329
>0.6 0.7495 0.8254 541,678
>0.7 0.7862 0.8552 492,978
>0.8 0.8398 0.9047 408,387
>0.9 0.9061 0.9764 279,918

Supplementary Table 5. Chromosome coordinates of PAR1, nonPAR and PAR2 regions on
chromosome X. Coordinates were taken from UCSC browser (hg19). PAR: pseudoautosomal region;
nonPAR: non-pseudoautosomal region.

Chr X
region

Chromosome
start position
(bp; hg19)

Chromosome
end position
(bp; hg19)

Interval size
(Mb)

PAR1 60,001 2,699,520 2.64
nonPAR 2,699,521 154,931,043 152.23
PAR2 154,931,044 155,260,560 0.33
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Supplementary Table 6. Average imputation quality score (INFO) stratified by minor allele
frequency (MAF) for PAR1, PAR2 and nonPAR regions on chromosome X. INFO was computed using
IMPUTE2. Variants tested include SNPs and indels. The values were computed using all variants obtained
after imputation of 451 samples, before applying any filters.

chr X region MAF Mean INFO Median INFO # variants

PAR1
0-0.01 0.138 0.05 19,909
0.01-0.05 0.175 0.076 6,226
0.05-0.5 0.059 0.041 12,975

PAR2
0 - 0.01 0.006 0.002 1,928
0.01 - 0.05 0.016 0.003 522
0.05 - 0.5 0.012 0.011 683

nonPAR
0 - 0.01 0.483 0.516 562,816
0.01 - 0.05 0.867 0.934 167,368
0.05 - 0.5 0.944 0.985 197,858

Overall
0 - 0.01 0.47 0.472 584,653
0.01 - 0.05 0.839 0.927 174,116
0.05 - 0.5 0.887 0.982 211,516

Supplementary Table 7. Number of imputed variants on the X chromosome before and after variant
filtering.

Post-imputation, without filtering Post-
imputation,
with fil-
tering

Chr X
region

Total #
variants

# variants
INFO
< 0.4

% variants
INFO
< 0.4

# variants
MAF
< 1%

% variants
MAF
< 1%

# variants
INFO < 0.4
MAF
< 1%

# variants
INFO ≥ 0.4
MAF ≥ 1%
HWE
p > 1e−6

PAR1 39,200 36,047 92% 19,418 50% 17,350 1,067
PAR2 3,154 3,128 99% 1,892 60% 1,887 5
nonPAR 957,985 259,220 27% 549,054 57% 256,245 405,820
Total 1,000,339 39,175 570,364 275,482 406,892
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Supplementary Table 8. Average imputation quality score (INFO) stratified by minor allele
frequency (MAF) for variants on chromosome X, after applying QC filters. INFO was computed using
IMPUTE2. Variants tested include SNPs and indels. Variant filters applied: MAF < 1%, INFO < 0.4,
HWE P < 1× 10−6.

MAF Mean INFO Median INFO # variants

0.01-0.5 0.9443 0.985 199,099
0.01-0.05 0.8727 0.935 182,493
0.05-0.1 0.9204 0.976 47,384
0.1-0.2 0.9405 0.984 48,400
0.2-0.3 0.9571 0.989 39,162
0.3-0.4 0.9567 0.988 34,270
0.4-0.5 0.9573 0.987 29,883

Supplementary Table 9. Average imputation quality score (INFO) of autosomal variants stratified by
minor allele frequency (MAF), using haploid imputation. Variants tested include SNPs and indels
before applying any filtering to the phased variants. INFO was computed using IMPUTE2.

MAF Mean INFO Median INFO # variants

0 - 0.01 0.485 0.52 18,504,053
0.01 - 0.05 0.904 0.964 3,997,251
0.05 - 0.1 0.945 0.989 1,283,309
0.1 - 0.2 0.96 0.993 1,530,730
0.2 - 0.3 0.967 0.994 1,109,200
0.3 - 0.4 0.969 0.994 950,117
0.4 - 0.5 0.97 0.994 884,740
0.05 - 0.5 0.961 0.993 5,758,096
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Supplementary Table 10. Concordance between imputed and phased genotypes (based on haploid
imputation) across 450 GTEx samples. The mean and median concordance values (R2) were computed
separately for common (MAF= 0.05− 0.50; A) and low frequency (MAF= 0.01− 0.05; B) variants, and
for incremental IMPUTE2 INFO cutoffs starting with INFO > 0.4. INFO: measure of imputation
confidence computed by IMPUTE2. MAF: minor allele frequency.

A. 0.05 ≤ MAF ≤ 0.50

IMPUTE2 INFO Mean R2 Median R2 # Variants

>0.4 0.997 1 5,032,202
>0.5 0.997 1 5,032,202
>0.6 0.997 1 5,032,198
>0.7 0.997 1 5,032,187
>0.8 0.997 1 5,027,302
>0.9 0.997 1 4,949,434

B. 0.01 ≤ MAF ≤ 0.05

IMPUTE2 INFO Mean R2 Median R2 # Variants

>0.4 0.963 1 4,066,835
>0.5 0.965 1 4,038,503
>0.6 0.969 1 3,953,709
>0.7 0.974 1 3,777,965
>0.8 0.980 1 3,465,497
>0.9 0.985 1 2,920,317
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Supplementary Table 11. RSIDs for trans-eVariants flagged as correlated with genotype PCs. These
SNPs were flagged based on a threshold of ≥ 99th percentile of correlations observed among random
variants (matched for MAF and distance to the nearest TSS), where the maximum correlation is assessed
for each variant across all 20 genotype PCs. For all the listed trans-eVariants, the maximum correlation is
obtained between the variant’s genotype and genotype PC 1.

Variant ID Maximum correlation

rs28429562 0.785
rs4588372 0.773
rs60413914 0.762
rs8006467 0.746
rs28613059 0.742
rs12114193 0.716
rs17840302 0.712
rs2731983 0.702
rs73112055 0.675
rs2169206 0.662
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Supplementary Table 12. Multi-tissue trans-eQTL using hierarchical FDR control q = 0.1 This table
shows 23 significant variant-gene associations across all tissues using hierarchical testing procedure.

Variant Gene Id Tissue P-value
rs832723 ENSG00000120437.7 Aorta 2.16× 10−13

rs56060157 ENSG00000198105.7 Cortex 6.49× 10−12

rs8128148 ENSG00000137824.11 Putamen (basal ganglia) 3.43× 10−12

rs11971996 ENSG00000058272.11 Sigmoid Colon 1.55× 10−12

rs1441563 ENSG00000162194.8 Esophagus Mucosa 1.53× 10−12

rs708993 ENSG00000114455.9 Esophagus Mucosa 1.79× 10−16

rs74462116 ENSG00000093144.14 Esophagus Mucosa 9.08× 10−12

rs74129340 ENSG00000136104.14 Left Ventricle 6.53× 10−12

rs12526847 ENSG00000175701.6 Lung 1.22× 10−12

rs73112055 ENSG00000166004.10 Lung 4.07× 10−12

rs7033206 ENSG00000132746.10 Not sun exposed skin (suprapubic) 1.42× 10−12

rs17116543 ENSG00000106268.11 Sun exposed skin (lower leg) 7.02× 10−12

rs6852182 ENSG00000108309.8 Sun exposed skin (lower leg) 3.09× 10−14

rs781658 ENSG00000108309.8 Sun exposed skin (lower leg) 3.32× 10−15

rs1810232 ENSG00000105185.7 Testis 8.84× 10−13

rs2293166 ENSG00000259817.1 Testis 2.49× 10−11

rs2745408 ENSG00000138813.5 Testis 1.51× 10−11

rs2745409 ENSG00000138813.5 Testis 3.06× 10−12

rs36095346 ENSG00000173418.7 Testis 1.11× 10−13

rs1867277 ENSG00000112379.8 Thyroid 8.44× 10−18

rs1867277 ENSG00000232070.4 Thyroid 7.38× 10−20

rs2120262 ENSG00000232070.4 Thyroid 5.36× 10−13

rs183791883 ENSG00000179979.7 Whole Blood 6.39× 10−12
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Supplementary Table 13. Trans-eVariant and eGene discoveries for restricted approaches in the
GTEx data. Each tissue with non-zero values in one or more of the restricted approaches is included as a
row with the combined total on the final row; the columns include the number of samples for that tissue,
followed by the number of unique trans-eGenes and trans-eVariants identified three restricted
runs—restricted to the LD-pruned, cis-eQTL, and trait associated variants—followed by the number of
unique trans-eGenes and trans-eVariants identified by any of the four approaches including the
genome-wide scan.

LD-pruned variants cis-eQTL variants Trait-associated variants All approaches
Tissue No. of samples eGenes eVariants eGenes eVariants eGenes eVariants eGenes eVariants
Muscle – Skeletal 361 0 0 3 4 3 2 10 44
Whole Blood 338 1 1 1 1 0 0 3 4
Skin – Sun Exposed (Lower leg) 302 10 12 2 3 2 3 15 30
Adipose – Subcutaneous 298 1 1 4 6 0 0 6 13
Lung 278 2 2 0 0 1 1 3 3
Thyroid 278 6 6 2 1 3 2 24 184
Cells – Transformed fibroblasts 272 0 0 4 5 3 3 6 15
Nerve – Tibial 256 0 0 1 1 0 0 1 1
Esophagus – Mucosa 241 4 4 2 2 0 0 6 14
Esophagus – Muscularis 218 1 1 1 1 1 1 3 3
Artery – Aorta 197 1 1 0 0 0 0 1 1
Skin – Not Sun Exposed (Suprapubic) 196 1 1 0 0 0 0 1 1
Heart – Left Ventricle 190 5 5 0 0 0 0 5 5
Adipose – Visceral (Omentum) 185 0 0 0 0 1 1 1 1
Breast – Mammary Tissue 183 0 0 2 4 0 0 2 4
Colon – Transverse 169 0 0 0 0 0 0 2 10
Heart – Atrial Appendage 159 2 3 0 0 0 0 2 3
Testis 157 5 6 6 6 7 8 41 274
Pancreas 149 0 0 1 2 1 1 3 13
Adrenal Gland 126 0 0 1 1 0 0 2 2
Colon – Sigmoid 124 1 1 0 0 0 0 2 10
Brain – Cerebellum 103 0 0 1 1 0 0 1 1
Brain – Caudate (basal ganglia) 100 7 7 0 0 0 0 7 7
Liver 97 1 1 0 0 0 0 1 1
Brain – Cortex 96 1 1 0 0 0 0 1 1
Brain – Nucleus accumbens (basal ganglia) 93 0 0 2 5 0 0 2 5
Brain – Cerebellar Hemisphere 89 0 0 1 1 0 0 1 1
Pituitary 87 0 0 0 0 1 1 1 1
Brain – Putamen (basal ganglia) 82 1 2 0 0 0 0 3 11
Vagina 79 0 0 0 0 1 1 5 28
Small Intestine – Terminal Ileum 77 0 0 1 1 0 0 1 1
Uterus 70 0 0 0 0 1 1 1 1
Total 47 54 33 41 25 24 157 676
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Supplementary Table 14. LD blocks of trans-eVariants that are associated with multiple genes. Four
regions including multiple trans-eVariants that have associations with more than one gene are listed. The
variants included in each of the regions have linkage disequilibrium R2 > 0.5 based on empirical R2

values.

Chr. Location Associated genes Tissue eVariants included Largest R2

chr2 210619276-
210694720

ENSG00000174567.7,
ENSG00000231196.3

Testis rs10174867, rs10932307,
rs10932308, rs10932309,
rs10932310, rs11692338,
rs12694188, rs13017987,
rs13029616, rs13034819,
rs1558438, rs17803849,
rs1990452, rs2041524,
rs2109852, rs2191915,
rs2286851, rs2370828,
rs2370835, rs731953,
rs7574101, rs7588518

0.992

chr5 131785770-
131807624

ENSG00000092010.10,
ENSG00000178685.9

Skeletal Muscle rs10059611, rs12659708,
rs2057655, rs2522047,
rs2522054, rs2522055,
rs2522056, rs2522062,
rs2522063, rs2522064,
rs2706339, rs2706373,
rs2706379, rs2706383,
rs4504381, rs6866467,
rs757105, rs886286

0.548

chr9 115874261-
115894240

ENSG00000268580.1,
ENSG00000126934.9

Testis rs2039221, rs62574457,
rs7031790, rs7867889

0.841

chr9 100592030-
100675976

ENSG00000112379.8,
ENSG00000232070.4

Thyroid rs12004762, rs12006522,
rs12343182, rs13302470,
rs1443434, rs1465965,
rs1561961, rs1867277,
rs1867278, rs1867279,
rs1867280, rs2120262,
rs3021523, rs3021526,
rs35324451, rs3758248,
rs3808893, rs3824495,
rs6478423, rs7023267,
rs7024345, rs7027221,
rs7031386, rs7034249,
rs7034336, rs7034648,
rs7037324, rs7038998,
rs7046645, rs7048255,
rs7849497, rs907577,
rs907581, rs925485,
rs9299258, rs993501

0.948

Supplementary Table 15. Trans-eQTLs replicated in TwinsUK This table shows three significant
variant-gene associations from GTEx trans-eQTL analysis that were also replicated in matched tissues in
the TwinsUK dataset.

Variant Gene Symbol Tissue P-value
rs1543438 RP11-725P16.2 Adipose - Subcutaneous 2.06× 10−7

rs1543438 RP11-725P16.2 Sun protected skin 2.06× 10−9

rs2456491 PDCD5 Lymphoblastoid Cell Lines 9.56× 10−9
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Supplementary Table 16. GWAS datasets used for co-localization.

Phenotype Abbreviation Reference
High density lipid cholesterol levels HDL http://www.nature.com/ng/journal/v45/n11/full/ng.2797.html
Low density lipid cholesterol levels LDL http://www.nature.com/ng/journal/v45/n11/full/ng.2797.html
Triglycerides levels TG http://www.nature.com/ng/journal/v45/n11/full/ng.2797.html
Total cholesterol levels TC http://www.nature.com/ng/journal/v45/n11/full/ng.2797.html
Coronary artery disease CAD http://www.ncbi.nlm.nih.gov/pubmed/21378990
Body-mass index BMI http://www.nature.com/nature/journal/v518/n7538/full/nature14177.html
Waist-to-hip ratio adjusted by BMI WHRadjBMI http://www.nature.com/nature/journal/v518/n7538/abs/nature14132.html
Waist-to-hip ratio WHR http://www.nature.com/nature/journal/v518/n7538/abs/nature14132.html
Inflammatory bowel disease IBD http://www.nature.com/ng/journal/v47/n9/abs/ng.3359.html
Crohn's disease Crohn's http://www.nature.com/ng/journal/v47/n9/abs/ng.3359.html
Ulcerative colitis UC http://www.nature.com/ng/journal/v47/n9/abs/ng.3359.html
Systemic lupus erythematosus SLE http://www.ncbi.nlm.nih.gov/pubmed/26502338
Type 2 diabetes T2D http://www.nature.com/ng/journal/v47/n12/abs/ng.3437.html
Fasting glucose levels FG http://ukpmc.ac.uk/abstract/MED/20081858
Multiple sclerosis MS http://www.ncbi.nlm.nih.gov/pubmed/21833088
Primary biliary cirrhosis PBC http://www.ncbi.nlm.nih.gov/pubmed/26394269
Schizophrenia SCZ http://www.ncbi.nlm.nih.gov/pubmed/25056061
Heart rate Heart rate http://www.ncbi.nlm.nih.gov/pubmed/?term=23583979
Celiac disease Celiac http://www.ncbi.nlm.nih.gov/pubmed/20190752
Alzheimer's disease Alzheimers http://www.ncbi.nlm.nih.gov/pubmed/?term=24162737
Rheumatoid arthritis RA http://www.ncbi.nlm.nih.gov/pubmed/20453842
Bipolar disorder BIP http://www.ncbi.nlm.nih.gov/pubmed/21926972
Cross-psychiatric disorder traits PGCCROSS http://www.ncbi.nlm.nih.gov/pubmed/23453885
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